Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 329: 111621, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736462

RESUMO

Mitogen-activated protein kinases (MAPKs) play important roles in the stress response of plants. However, the function of MPK proteins in freeze-resistance in wheat remains unclear. Dongnongdongmai No.1 (Dn1) is a winter wheat variety with a strong freezing resistance at extremely low temperature. In this study, we demonstrated that TaMPK6 is induced by JA signaling and is involved in the modulation of Dn1 freeze resistance. Overexpression of TaMPK6 in Arabidopsis increased the survival rate of plant at -10 â„ƒ. The scavenging ability of reactive oxygen species (ROS) and the expression of cold-responsive genes CBFs and CORs were significantly enhanced in TaMPK6-overexpressed Arabidopsis, suggesting a role of TaMPK6 in activating the ICE-CBF-COR module and antioxidant enzyme system to resist freezing stress. Furthermore, TaMPK6 is localized in the nucleus and TaMPK6 interacts with TaICE41, TaCBF14, and TaMYC2 proteins, the key components in JA signaling and the ICE-CBF-COR pathway. These results suggest that JA-induced TaMPK6 may regulate freezing-resistance in wheat by interacting with the TaICE41, TaCBF14, and TaMYC2 proteins, which in turn enhances the ICE-CBF-COR pathway. Our study revealed the molecular mechanism of TaMPK6 involvement in the cold resistance pathway in winter wheat under cold stress, which provides a basis for enriching the theory of wheat cold resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Congelamento , Arabidopsis/genética , Antioxidantes/metabolismo , Temperatura Baixa , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 232(6): 2418-2439, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605021

RESUMO

Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino , Plântula/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...